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Abstract

This paper discusses optical propagation studies performed on the Airborne Laser (ABL)
Challenge Project by the Directed-Energy Directorate of AFRL. A separate paper contained
in this volume discusses stratospheric turbulence simulations which complement the optical
studies reported here. Work performed since the start of FY99 includes: 1) results pertaining
to the e�ect of phase ambiguities and extended reference beacons on adaptive optics system
performance; and 2) results used in the design and calibration of scintillometry experiments
being performed to determine the strength of atmospheric turbulence on paths of interest to
ABL.

Introduction

This paper discusses some results pertaining to optical propagation through stratospheric
turbulence obtained from computations performed on the Airborne Laser Challenge project.
The Airborne Laser, or ABL, is a boost-phase theater missile defense system which utilizes a
directed-energy laser weapon carried on a 747 aircraft. Theater missiles will be detected using
plume radiation, tracked using low-power laser illumination and destroyed using a high-power
chemical laser. The success of ABL depends on the ability to deliver an adequately stabilized
and compensated laser beam on target. The principal challenge is to cope with laser beam
distortions introduced on the atmospheric path between the ABL and the target. The
Airborne Laser Challenge Project is supporting ABL and the associated technology program
by performing computer simulations of pertinent optical, adaptive optical and turbulence
phenomenology.

A detailed explanation of the organization of the ABL Challenge Project, the optical,
adaptive-optical and stratospheric turbulence phenomenology of interest, and the computa-
tional methodology employed to explore these phenomenology is given in a paper published
in the 1997 DoD User Group Meeting Proceedings.1 In the following section a brief summary
of the computational methodology is given. This is followed by a discussion of some of the
results obtained thus far in FY99.

Computational Methodology

Atmospheric turbulence does not a�ect the polarization of laser light to a measurable
extent. Thus, the propagation of such light is well-described by scalar di�raction theory,
as embodied in the Helmholtz equation. Moreover, the scattering produced by atmospheric
turbulence is strongly forward-directed at optical wavelengths; and thus, the Helmholtz
equation can be solved in the paraxial approximation|which yields a parabolic PDE which
can be solved using spectral techniques. The solution is implemented by a split-operator
method which divides the propagation into a sequence of two-step processes whereby the
�eld at location z is free-space propagated to z+dz, and then subsequently adjusted to
account for the phase shift introduced by the inhomogeneities between z and z+dz. The
properties of the atmospheric turbulence are incorporated by generating phase screens having
a prescribed spatial spectrum in the plane transverse to the propagation direction. The free-
space propagation and phase screen generation are accomplished using a 2-D FFT.
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Figure 1. Node partitioning for a multi-beam, multi-node propaga-
tor.

To parallelize the propagation code we simply: 1) divide the columns of the �eld and tur-
bulence phase screen arrays among the processors; and 2) use a parallel 2d FFT to compute
the Fourier transforms. This provides an extremely simple and powerful implementation
since we can not only propagate one laser using multiple nodes, but can also simultane-
ous propagate multiple laser beams. This is accomplished by partitioning the nodes into
separately identi�able communication groups using the MPI COMM SPLIT routine. Each
communication group de�nes a multi-node propagator as illustrated in Figure 1. We use
this capability in our simulations of extended target imaging with noncoherent and partially
coherent light and in related adaptive optics simulations. For example, in the case of the
simulation of the imaging of an extended target illuminated by noncoherent light, we use the
fact that a noncoherent image can be approximated by a �nite sum of independent coherent
speckled images|each image being computed by one of the propagator node groups.
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Computational Studies

Some of the results obtained from optical propagation simulation studies performed thus
far in FY99 are discussed in this section. This includes: 1) results pertaining to the e�ect of
phase ambiguities and extended reference beacons on adaptive optics system performance;
and 2) results used in the design and calibration of scintillometry experiments being per-
formed to determine the strength of atmospheric turbulence on paths of interest to ABL.

Phase Ambiguity and Extended Reference E�ects on Adaptive Optics Com-

pensation of Turbulence

Adaptive optics systems typically compensate for the e�ects of turbulence by sensing the
phase of a reference beacon located on or near the object to be imaged or irradiated. It can be
shown that if one applies a phase correction equal to the conjugate (negative) of the reference
phase the e�ects of the turbulence will be mitigated. This assumes that the reference is of
zero extent and that its phase is faithfully measured and replicated. In practice, these
conditions are never totally satis�ed. In ABL the target reference is obtained from the �eld
re
ected from the target by a laser illuminator beam focused at the target|and thus, the
reference, at best, extends over a region comparable to or larger than the di�raction limited
width of the illuminator laser target focal spot. In addition to the obvious requirement that
the wavefront sensor must have adequate spatial and temporal resolution, the measurement
of the reference phase is further complicated by the fact that if the turbulence is su�ciently
strong the phase may not be a smoothly varying function of position within the receiver
aperture. In particular, if the �eld has zero amplitude at a point, the phase in the vicinity of
that point is ambiguous|i.e., if one traverses a path that surrounds the point and encloses
no other zero-points of the �eld it will be found that the phase does not return to its value
at the starting point. Instead, the phase in the vicinity of a �eld zero exhibits 2� jumps
(ambiguities). As described in the following section, this leads to errors in wavefront sensing
which degrade system performance.

Least-Squares Wavefront Sensing and the 'Hidden Phase'

Wavefront sensors used in adaptive optics are typically based on the measurement of
wavefront slopes|or equivalently phase di�erences|measured within a set of subapertures.
For example, a popular implementation (Hartmann sensor) uses a lenslet array which focuses
the light from the lenslet subapertures onto a corresponding array of detectors. If the
lenslet subapertures are su�ciently small, the wavefront slopes (phase di�erences) can be
determined from the positions of the focal spots on the detectors. The set of phase di�erences
which span the entire pupil provide a over-determined set of equations which is then solved
by a least-squares calculation which minimizes the di�erence between the measured and
computed phase di�erences. This is referred to as least-squares wavefront sensing. Most
wavefront sensors commonly used today are least-squares wavefront sensors|e.g., wavefront
sensors based on shearing interferometry also measure wavefront slopes and typically use a
least-squares algorithm to determine the corresponding phase values.

The problem with least squares wavefront sensing is that such a sensor does not see the
phase ambiguities described above.2 To provide an understanding of this we note that the
phase di�erences measured by the wavefront sensor can, in general, be described as the sum
of two vector components. One of these components is the gradient of a scalar function
and the other is the curl of a vector function. When the phase function is smooth and
continuous the curl term is zero|and this is the situation which exists when the phase is
unambiguous. The curl term describes the additional, non-smooth, phase variation that
occurs when ambiguities are present|i.e., when the �eld goes to zero within the domain of
interest. It can be shown that the least-squares solution to the wavefront sensing problem
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depends on the divergence of the measured phase di�erence vector. But the divergence of a
vector derivable as the curl of another vector is zero. Thus, a least-squares wavefront sensor
does not see the phase associated with the phase ambiguities|and we refer to this phase as
the 'hidden phase'.

Implementation of a Generic Least-Square Wavefront Sensor Model For Computational Studies

It can be shown that the phase function � determined by the least-squares formulation of
the wavefront sensing problem satis�es the following discrete version of Poisson's equation3

(�i+1;j � 2�i;j + �i�1;j) + (�i;j+1 � 2�i;j + �i;j�1) = �i;j ; (1)

�i;j = (�x
i;j ��x

i�1;j) + (�y
i;j ��y

i;j�1) ; (2)

where the �'s are the measured phase di�erences. Note that the quantity � on the right side
of Eq. 1 is the discrete version of the divergence of the phase di�erence measurements|and
thus, does not include the e�ect of the phase ambiguities, as discussed above. The boundary
conditions appropriate for the solution of the least-squares wavefront sensing problem are
the Neumann conditions which require that the derivative of the phase function be zero at
the boundary.*

We have implemented a solution of Eqs. 1{2 using a discrete Cosine transform. The
idealized wavefront sensor used in the computational studies computes phase di�erences
between mesh points by computing the product of the �eld at a mesh point with the conjugate
of the �eld at an adjacent point and then using the arctangent function to compute the phase
di�erence. Two types of wavefront sensing are modeled depending on the nature of the
reference beacon. In the simplest case we model the reference as a coherent 'point source'|
approximated by a small Gaussian source. In this case the phase di�erences are computed
and used directly as described above. A more complicated model is used to represent an
extended reference beacon. In this case we assume that the beacon radiation is noncoherent.
This type of beacon is modeled by computing the phase di�erences for a set of coherent
speckle �eld realizations of the beacon and then adding the phase di�erence measurements
weighted by the average of the irradiance at the respective �eld points. The weighting is done
to represent the fact that a least-squares wavefront sensor e�ectively does the same type of
weighting in its measurement of the phase di�erences of a noncoherent source. The speckle
realization approach used here is the same as that used in the modeling of noncoherent target
imaging. We have found that the addition of 16 speckle realizations provides an adequate
simulation of noncoherent wavefront sensing.

Results Pertaining To Phase Ambiguity and Extended Target Referencing E�ects.

The simulations were performed for path and optical parameters appropriate to the
Airborne Laser Atmospheric Characterization Testbed (ABLACT) experiments. These ex-
periments are being conducted at White Sands Missile Range (WSMR) on a path between
North Oscura Peak (NOP) and Salinas Mountain. The path length is approximately 51km,
the wavelength is .987�m, and the receiver/transmitter aperture is 70cm. The strength of
the turbulence is characterized by the refractive index structure function C

2
N|which was as-

sumed to be constant along the path. Results have been obtained for values of C2
N spanning

a range from weak to relatively strong turbulence.
To explore the e�ect of phase ambiguities on wavefront sensing we have considered two

idealized cases. In the �rst case, the adaptive optics reference beacon is a Gaussian beam

* It should be noted that the formulation discussed here applies only to a rectangular
geometry.

4



approximation to a point source. The target-plane irradiance distribution of the Gaussian
beam is

I(x) = Io exp(�
jxj2

�2o

) ; (3)

�o = d=3 ; (4)

where d is de�ned such that approximately 90% of the energy is within a circle of diameter
d. We thus refer to the Gaussian beam as having a ('e�ective') diameter d. d was 2cm for the
results presented here|which is smaller than the resolving capability of the scoring-beam
transmitter aperture and thus should yield adaptive compensation results characteristic of
an unresolved point reference. In the second case, the adaptive optics reference is a 
at disk
which emits noncoherent radiation. The diameter of this disk was varied from 3 to 90cm.

In directed-energy applications the goal of adaptive optics compensation is to restore
the ability to focus a transmitted laser beam to a di�raction-limited spot on a distant
target immersed in a distorting medium. The degree to which this is achieved is commonly
expressed in terms of the Strehl ratio. Results are presented here for two types of Strehl ratio:
1) an on-axis Strehl, which is the ratio of the boresight peak irradiance obtained with adaptive
compensation for path distortions to that which is obtained with a di�raction-limited beam
propagated through a vacuum; and 2) a bucket Strehl, which is the ratio of the energy
contained within a �nite aperture (photon bucket) centered on the boresight with adaptive
compensation to that obtained in the same aperture for vacuum propagation. These Strehl
ratios are indicative of the success in compensating for the e�ect of extended path distortions
on the distribution of the irradiance at the target. For the purpose of assessing the impact of
phase ambiguities on wavefront sensing we have computed an additional Strehl ratio which
is the ratio of the on-axis peak irradiance that would be obtained if the compensated �eld
re
ected from the adaptive optics corrector mirror were were brought to focus in a vacuum
to that which would be obtained if all of the phase of the incoming �eld were sensed and
removed by the compensating mirror. This is a 'local' Strehl ratio which is unity when there
is no 'hidden phase' and thus it is a measure of how well the wavefront sensor is working.

Results obtained in the point reference studies are shown in Figures 2 and 3. In Figure 2
results are shown for the local on-axis Strehl ratio for the ABLACT/NOP path as a function
of the strength of the turbulence. In these simulations we computed the local on-axis Strehl
ratio for 200 independent realizations of path turbulence. Note that there is not a unique
Strehl ratio for any given strength of turbulence, but rather the Strehl 
uctuates randomly
within a range that changes as the strength of the turbulence changes. This is caused by the
fact that the frequency of occurrence and spatial distribution of phase ambiguities changes
as the strength of the turbulence changes. The parameter �2R is the Rytov theory result for
the variance of the natural logarithm of the amplitude of a spherical wave propagated over
the path from the target to the adaptive optics receiver4.

�
2

R = :124k7=6C2

Nz
11=6

: (5)

�
2
R is a measure of the strength of the turbulence e�ects and these e�ects vary from relatively
weak for � = :25 to relatively strong for � = 2. Note that the on-axis Strehl is essentially
unity for all of the atmospheric realizations when � = :25|which implies that very few
phase ambiguities exist for turbulence this weak. It is apparent that as the strength of
the turbulence is increased, i.e., as � is increased, the frequency of occurrence of phase
ambiguities increases.

The results in Figure 3 pertain to the case where we have applied a least-squares phase
compensation to a scoring beam propagated back to the target. The Strehl ratios plotted
here are computed at the target and results are given for both an on-axis Strehl and a bucket
Strehl computed for a bucket that has a diameter equal to 2�z

D
|i.e., a bucket having an extent

approximately equal to a di�raction-limited focal spot for a scoring beam having diameter D

5



0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Realization #

S
tr

eh
l R

at
io

Effect of Phase Ambiguities on Least Squares Wavefront Reconstruction

NOP, λ=.987µm

σχ
2=.3708 when α=1 α=.25

α=.5
α=1
α=2

Figure 2. Point-reference, local on-axis Strehl ratio.
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and a target at the distance z. The impact of phase ambiguities is illustrated by the horizontal
line which indicates the theoretical value of the on-axis Strehl ratio expected in the limit of
very strong turbulence if one could detect and implement perfect phase compensation.*

Results obtained for the case of extended target referencing are shown in Figures 4 and
5. The on-axis Strehl results are given in Figure 4 and the 2�z

D
bucket results in Figure

5. The Strehl ratios are plotted versus the diameter of the reference disk|where the zero
diameter results were obtained using the point source reference described above. If one
were to model a coherent extended reference it would be found that the �nite extent of the
reference signi�cantly a�ects the �delity of the phase measurement. For the noncoherent
references considered here, however, the e�ect of reference extent is substantially mitigated
by the fact that the wavefront sensor responds essentially to an average over many speckle
realizations of the coherent reference|which, as indicated above, we model using the sum
of the 16 independent realizations of the speckle �eld produced by the reference.** For
broadband noncoherent radiation this averaging overs over a time interval much shorter
than the time for the atmospheric to change. Thus, the averaging eliminates the spurious
phase information due to the source extent but does not measurably a�ect the phase due to
the turbulence.

The degree to which a noncoherent extended reference approximates a point source
reference is indicated by the Strehl ratio results in Figs. 4 and 5 for the case where the
turbulence strength is zero. In this case the degradation in Strehl with increasing disk
diameter is due totally to the extended nature of the source. Note that this is a very small
e�ect for the noncoherent reference used in our study. When the turbulence is nonzero, we
expect the combined e�ects of phase ambiguities and anisoplanatism to potentially degrade
the adaptive optics performance. In the context used here the term anisoplanatism refers to
the decrease in compensation due to the fact that if you focus a scoring beam on the boresight
using phase compensation information from a reference displaced from the boresight the
phase information will contain errors due to the displacement. Thus, in addition to the
degradation in performance due to the presence of phase ambiguities we expect that the
performance of an extended target reference will also be a�ected by these anisoplanatic
e�ects. It is interesting to note that bucket Strehl results are less sensitive to reference size
than the on-axis Strehl results. The reasons for this are under study.

Design and Calibration of Scintillometry Experiments.

One of the most important issues in the ABL program is the characterization of the
strength and distribution of the stratospheric turbulence likely to be encountered in sce-
narios of interest. Additionally, in order to interpret the results obtained in the ABLACT
experiments being performed at WSMR we must be able to characterize the strength of
the turbulence on the NOP path. The measurement of irradiance scintillation (
uctuation)
over these paths provides a means of estimating the strength of the turbulence if we know
something about its distribution. In order to accurately estimate turbulence strength from

* It should be noted, however, that this result does not tell the entire story for compen-
sation in this limit. It can be shown that as the strength of the turbulence is increased the
irradiance in the focal plane has a principal lobe on the boresight which sits on top of a
much lower amplitude but wider pedestal of radiation. It is true that as the strength of the
turbulence is increased the value of the on-axis peak irradiance stabilizes to the theoretical
value given in Figure 3, however, the width of the lobe containing the peak is steadily re-
duced as the strength of the turbulence is increased. This means that if one were to measure
a bucket Strehl instead of the on-axis Strehl it is likely that the di�raction-limited bucket
Strehl would be much smaller than the on-axis Strehl in the limit of very strong turbulence.
** Increasing the number of speckle realizations to 32 does not signi�cantly change the
results.
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scintillometry experiments, however, we must account for the fact that the relationship be-
tween the measured variance of the irradiance and the strength of the turbulence is nonlinear.
We account for this behavior by simulating the propagation on the path of interest. We are
currently providing results for the design and calibration of two scintillometry experiments:
1) stellar scintillometry experiments which utilize a KC135 aircraft 
ying in the vicinity
of the tropopause; and 2) scintillometry experiments to be used in the calibration of the
ABLACT experiments being performed on the NOP path. This work is described in the
following sections.

Design and Calibration of Stellar Scintillometry Experiments

We have calculated the e�ect of receiver aperture size and detector spectral bandwidth
on the measurement of stellar scintillation|assuming that the turbulence is distributed
according to the Clear 1 Night model derived from the balloon data, and extended to altitudes
above 30km consistent with the decrease in atmospheric density with altitude. Increasing
the aperture size and/or the spectral bandwidth of the receiver decreases the magnitude of
the measured scintillation and eventually obscures our ability to relate the magnitude of the
scintillation to the strength of the turbulence. The sensitivity to these e�ects depends on the
elevation angle of the stellar source. The propagation physics incorporated in the simulation
to account for these e�ects is described in the next section. This is followed by a discussion
of the techniques used to relate the simulation results to the stellar scintillation results.

Propagation Physics and Simulation Description

These simulations di�er from what we usually have done in the ABL studies in two
respects: 1) the stellar light propagates essentially as an extended, plane-wave as it enters
the atmosphere, as opposed to the point-source and bounded-beam propagation phenomena
we have simulated in the past; and 2) the stellar light has a broad spectral width and thus
the e�ects of wavelength dispersion must be accounted for. The plane-wave propagation is
easily accommodated by removing all apodization at the edge of the computational mesh
and allowing the initial wave to extend uniformly to the edge of the mesh. Aliasing is not
an issue as long as the mesh is su�ciently wide to accommodate the scattering resulting
from the turbulent inhomogeneities. In fact, the periodic nature of the FFT solution of
the propagation equations ensures that the results mimic plane-wave propagation as long
as the above condition is satis�ed.* The e�ects of wavelength dispersion are accounted
for by the di�ractive nature of the propagation and by explicitly introducing a refractive
bending which accounts for the chromatic dispersion in the refractive index. Speci�cally,
we shift the transverse position of successive phase screens to account for the refractive
bending associated with the atmospheric density gradient. In calculating the shift, we use
the following expression for the wavelength dependence of atmospheric refractive index n

(n� 1) � 106 = 64:328+
29498:1

(146� 1=�2)
+

255:4

(41� 1=�2)
; (6)

where � is the wavelength in microns. This expression is accurate for all wavelengths of
interest in our stellar scintillation studies.

The simulation is performed on a uniform 2048x2048 mesh with 2cm between mesh
points. In a typical run 7 to 9 wavelengths are propagated for each of 32 di�erent atmospheric
realizations. The irradiance scintillation is measured with an array of detectors dispersed
uniformly throughout the mesh. For these studies a 16 by 16 array of detectors spaced 2.56
meters apart is used to compute irradiance statistics. The total number of detector signals

* Scattering which occurs near the edge of the mesh is folded back and reappears at the
opposite edge.
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available for the statistical calculations is 16 � 16 � 32 = 8192. The e�ects of �nite receiver
aperture are calculated by averaging the irradiance over di�erent size apertures, which had
diameters of 2, 5, 10 and 15cm in the results presented here.

The e�ects of �nite spectral bandwidth are calculated as follows. For each receiver
aperture size we calculate the correlation between the signals at the di�erent wavelengths.
We found that the calculated correlations are well �t by a function of the form;

f(v) = exp(�a � jvj � b � v
2) : (7)

where v is the di�erence in the wavelengths of the light causing the two signals. The constants
a and b are determined by a least squares �t of the natural log of the measured correlations
to the argument of f(v). The factor RF by which the variance of irradiance scintillation is
reduced by a detector having a spectral passband h(!) is

RF =

R
1

�1
d!1

R
1

�1
d!2 h(!1)h(!2) < �I(!1)�I(!2) >

< (�I)2 >
R
1

�1
d!1

R
1

�1
d!2 h(!1)h(!2)

; (8)

< �I(!1)�I(!2) > =< (�I)2 > f(!1 � !2) : (9)

In evaluating the reduction factor RF for the stellar scintillometry experiments we have
assumed that the spectral passband function can be approximated by a Gaussian of the
form

h(!) = exp(�
!
2

2�2b
) ; (10)

where the parameter �b is related to the full-width, half-max bandwidth fwhm by

�b =
fwhm

2 ln(2)
: (11)

Using these relations, we can evaluate the integrals in Eqs. 8 and 9 and obtain the following
expression for the reduction factor

RF =
exp(a2 b�b2)
(1 + 4b�2b)

1=2

�
1� erf(a b�b)

�
; (12)

b�b2 = �
2

b

1 + 4b�2b
: (13)

Thus, given the full-width, half-max value of the detector spectral passband and the ap-
propriate values of the parameters a and b determined from the least squares �t of the
scintillation data,, we obtain the factor by which the zero bandwidth stellar scintillation is
reduced using the reduction factor de�ned in Eqs. 8{13.

Utilization of Simulation Results in the Estimation of Turbulence Strength From Experimental

Data

Experimental measurements of stellar scintillation are characterized by �ve parameters:
1) the strength and distribution of the turbulence; 2) the altitude of the aircraft; 3) the
elevation angle of the path along which the star is observed; 4) the diameter of the receiver
aperture; and 5) the spectral passband of the receiver detection system. The approach
that we have used to estimate the turbulence strength associated with the experimental
measurements is to establish databases of propagation results applying to a wide variety
of propagation conditions coupled with the development of a Matlab interpolation routine
which is used to interpolate the simulation results to the parameter values pertinent to
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the experiment. The initial set of airborne scintillometry experiments were performed in
June 1998 using a receiver with a spectral passband centered at .8�m. The database that we
computed for those experiments contains results for: 1) turbulence pro�les having a strengths
of .25, .5, 1, 2, 2.8284, 4, 5.65685, 8, 11.3137 and 16 times the Clear 1 Night model; 2) aircraft
altitudes of 12.6 and 14.4km; 3) elevation angles of 6, 8, 10, 12, 14, 16 and 18 degrees; 4)
receiver diameters of 2, 5, 7, and 10cm; and 5) spectral passbands of 0, 12, 25, 40, 65, and
100nm. The receiver diameters and spectral passbands are those used in the experimental
measurements, and thus, no interpolation is required for these parameters. The Matlab
routine �rst interpolates the database to obtain results pertinent to the aircraft altitude.
It then interpolates the resulting database to obtain data pertinent to the elevation angle
for that measurement. At this point we have a set of irradiance variance versus turbulence
strength values pertinent to the aircraft altitude, receiver diameter, spectral bandwidth
and elevation angle of the measured irradiance variance. We then use interpolation to �nd
the turbulence strength associated with the measured variance. In doing this we verify
that the interpolation is unique|i.e., we verify that the we are not in a region where the
scintillation has saturated and the results are thereby ambiguous. The experiment was
designed such that we would seldom be in a saturated condition|principally by excluding
elevation angles less than 6 degrees. This is illustrated by the irradiance variance versus
turbulence strength results shown in Figure 6. These results were computed for an altitude
of 12.6km, a receiver aperture diameter of 5cm and a spectral passband of 12nm. Note that
for turbulence strengths less than 8 times the Clear 1 Night value the irradiance variance
curves show little evidence of saturation and the determination of the strength from the
measured irradiance variance is unique.

The success of the initial set of airborne scintillometry measurements was, at least in
part, responsible for the decision to proceed with the development of the ABL system made
in the summer of 1998. It was recognized at that time that additional measurements at lower
elevation angles would be worthwhile and we are now planning a new set of measurements
to be performed in June 1999. In order to reduce the e�ects of irradiance saturation at lower
elevation angles these experiments will be performed with a receiver having a spectral pass-
band centered at 2.3�m. An example of the irradiance saturation characteristics computed
for the new experiment is shown in Figure 7.

Calibration of ABLACT Experiments Using Scintillometry

The ABLACT experiments are exploring a number of fundamental adaptive optics and
tracking issues of importance to ABL. As indicated earlier, these experiments are being
performed on a path between North Oscura Peak (NOP) and Salinas mountain at WSMR.
In order to properly interpret the results of these experiments it is important that we have a
measure of the strength of the turbulence on this path. This will be done using measurements
of the irradiance scintillation of a spherical wave source propagated from Salinas mountain
to NOP. The concept of the measurement is similar to that used in the design of the stellar
scintillometer experiments but di�ers in that we hope to unambiguously measure turbulence
strengths well into the saturation regime. Based on computer simulation results for irradiance
scintillation on the NOP path we believe that we can do this utilizing receivers having
di�erent size apertures. The results in Figures 8 and 9 illustrate the basis of this concept.
Figure 8 shows the variance of irradiance as a function of turbulence strength for receiver
apertures of 1 and 4cm. The �nite spatial correlation of the irradiance scintillation results in
a reduction in the measured irradiance variance for the larger of the two apertures. Figure
9 shows the ratio of the irradiance variance measured with 1 and 4cm apertures. Note that
this ratio is a monotonically increasing function of turbulence strength. We believe that
this will allow us to estimate C

2
N in these experiments well into the saturation regime|a

conclusion that could not have be reached without the aid of computer simulation.
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Figure 6. Stellar scintillometry irradiance variance for a

receiver with a spectral passband centered at .8�m.
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Figure Captions

1 Node partitioning for a multi-beam, multi-node propagator.
2 Point-reference, local on-axis Strehl ratio.
3 Point-reference, scoring-beam Strehl ratio.
4 Extended target reference, on-axis Strehl ratio.
5 Extended target reference, bucket Strehl ratio.
6 Stellar scintillometry irradiance variance for a receiver with a spectral passband centered
at .8�m.

7 Stellar scintillometry irradiance variance for a receiver with a spectral passband centered
at 2.3�m.

8 Irradiance variance for the NOP path.
9 Ratio of irradiance variances for 1 and 4cm receiver apertures.
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